专为高三考生提供有价值的资讯

当前位置:当书网高考复习高中数学等比数列性质

等比数列性质

时间:2019-12-10保存为WORD

等比数列性质:在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。

等比数列的性质

①在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。

②若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列;

③在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk;

④q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q;

⑤等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1;

等比数列的特征

(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数。

(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

小编推荐

1.反三角函数图像及性质

2.中外合作办学是什么性质的大学 读完有用吗

3.湖北工业大学国际学院靠谱吗 是什么性质

4.高中数列难不难

5.2024国际本科是咋回事 属于什么性质的学历

6.深度解析 学业考试的性质与影响

7.余弦定理求三角形面积公式是什么 余弦定理性质

8.2024国际本科是啥 属于什么性质的学历

相关文章

Copyright 2019-2029 http://www.dangshu.com 【当书网】 皖ICP备19022700号-7

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告